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Abstract

We discuss the origin of the Wilson polygon–MHV amplitude duality at a
perturbative level. It is shown that the duality for the MHV amplitudes at
the one-loop level can be proven upon a particular change of variables in
Feynman parametrization and with the use of the relation between Feynman
integrals at different space-time dimensions. Some generalization of the
duality which implies the insertion of a particular vertex operator at the Wilson
triangle is found for the 3-point function. We discuss the analytical structure
of Wilson loop diagrams and present the corresponding Landau equations.
The geometrical interpretation of the loop diagram in terms of the hyperbolic
geometry is discussed.

PACS numbers: 11.15.Bt, 11.25.Tq, 11.30.Pb

1. Introduction

The clarification of the geometrical structure behind perturbation theory in SYM which would
provide a method of summation of the series remains a challenging problem. In recent years
two novel ideas concerning these issues have been developed. It was demonstrated in [1]
that important localization phenomena occur for the perturbative amplitude in twistor space.
On the other hand the stringy calculation of the amplitudes [2] suggested a hidden duality
between the amplitudes in N = 4 SYM and the Wilson polygon built from light-like momenta
of external gluons. It is important to note that the amplitudes look to be mapped to an ordinary
position space Wilson loop. A connection between amplitudes and momentum space Wilson
loops was investigated in [3].

This duality has been checked at one- [4, 5] and two loops [6, 7] in the perturbative theory
and has the possibility to be all-loop exact (see [11] for a review). During this development
it was also realized that there is an underlying important dual superconformal symmetry
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which was clarified both in the weak coupling [8, 9] and strong coupling [10] cases. The
dual superconformal symmetry was argued to be the consequence of the fermionic T-duality
in the stringy sigma model [12] and the combination of the usual superconformal and dual
superconformal symmetries implies Yangian symmetry in the perturbativeN = 4 SYM theory
[13].

In spite of the impressive progress, many key issues are still to be clarified. In this
paper we shall focus on the origin of the Wilson polygon–MHV amplitude duality which
will be analyzed at the one-loop level. We shall try to get the precise mapping between the
one-loop diagram for the MHV amplitude and the one-loop correction to the Wilson polygon.
It turns out that the proper change of variables in the Feynman parametrization of the loop
integral for the six-dimensional box diagram brings it to the form of the Wilson polygon in
four dimensions. Conversely, the four-dimensional box diagram can be related to the Wilson
polygon is six dimensions. The IR divergences of the amplitudes become mapped into the UV
divergences of the Wilson polygon. Moreover, it is seen that the MHV amplitude obeys this
special property since it can be expressed in terms of the two-mass easy box diagrams only,
and a simple change of variable we have found does not work for the non-MHV amplitudes.
Using the known interplay between particular D = 6 and D = 4 integrals [14, 15], the answer
can immediately be presented in terms of the finite part of the D = 4 two-mass easy box.

The loop amplitudes can be calculated via dispersion relations, and hence the duality
implies that some version of the imaginary part calculations can be formulated for the loop
corrections to the Wilson polygon as well. To this end we shall slightly generalize the cut
technique for the loop diagrams and argue that on the Wilson polygon the dispersion calculation
corresponds to cutting of the Wilson polygon into several pieces and subsequent gluing with
the insertion of particular operators. We shall also comment on the Landau equations for the
singularities on the Wilson polygon.

It is reasonable to search for a more natural geometry behind the one-loop calculation
which would shed additional light on the duality under discussion. Let us first comment
on the previous studies of this issue. The one-loop correlation functions suggest the natural
emergence of an AdS-type geometry in 3-point [17] and 4-point functions [18]. A similar
hyperbolic structure is also clearly seen in the one-loop effective action in the constant external
field [19]. In both cases the Schwinger parametrization of the loop integral plays a crucial
role. In particular for the 3-point function the combination of the Schwinger parameters plays
the role of the radial coordinate in the AdS5 [17], while in the effective action case a similar
identification emerges in the AdS3 submanifold [19].

The geometry behind the BDS formula [23] emerging upon summation over the loops was
suggested in [24] and the corresponding fermionic representation which supports the hidden
integrability was found. The key point is that there is a natural playground for the topological
strings both in the A model with the Kähler gravity and B model involving KS gravity on
the moduli space of the complex structures. Both complex and Kähler types of moduli are
provided by the kinematical invariants of the scattering particles.

In this paper we shall discuss the geometrical aspect of the one-loop calculation based on
the observation of [20] related to the Kähler moduli. It was found in [20] that the one-loop box
integral counts the hyperbolic volume of the 3D manifold in the space of Feynman parameters.
Contrary to Gopakumar’s approach when the 4-point function is treated differently from the
3-point function, in this approach they are considered on an equal footing. Since the 3D
hyperbolic manifolds emerge naturally as the knot complements we shall make some links
with the Chern–Simons calculation with the inserted Wilson loop.

The paper is organized as follows. In section 2 we review the duality between the MHV
amplitudes in N = 4 theory and the Wilson polygon. In section 3 we briefly explain the
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relevant hyperbolic geometry behind the one-loop calculations. Section 4 is devoted to the
explicit derivation of the duality for the MHV amplitude at the one-loop level. In section 5
we provide a simplified example of the duality for the 3-point function which involves the
vertex operator on the Wilson polygon. In section 6 we consider some aspects of the unitarity
calculation of the Wilson polygons. Section 7 is devoted to comments concerning the relation
of the divergent contributions with the hyperbolic geometry of one-loop diagrams. In the last
section we shall summarize our observations and mention some open problems.

2. The connection between Wilson polygons and MHV amplitudes

In this section we briefly review the conjectured duality between the loop amplitudes in N = 4
theories and Wilson polygons built from the external momenta (see [11] for a review).

Specifically, it was conjectured in [2] that any MHV N-leg color-ordered amplitude follows
from the vacuum expectation value of the Wilson loop in the special form

AMHV
all-loop

AMHV
tree

= 〈W(x1, x2, . . . , xN)〉, (1)

where the closed Wilson loop polygon has light-like momenta at the edges pi = xi − xi+1 and
vertices at xi . Its closeness is provided by the total momentum conservation. At the strong
coupling limit both Wilson polygon and the MHV amplitude are calculated in the sigma model
approach.

At weak coupling, to check this Wilson polygon–MHV amplitude duality, one considers
the expansion of the Wilson polygon in the YM coupling, treating the Wilson loop as placed
in the coordinate space. In its weaker form the duality connects only the finite part of the two
objects

Fin

[
AMHV

all-loop

AMHV
tree

]
= Fin[〈W(p1, p2, . . . , pN)〉]. (2)

Perfect matching of the Wilson loop and amplitude finite parts has been found for one-
[4, 5] and two-loop [6, 7] solutions up to six external legs. Moreover, it was demonstrated that
the anomalous Ward identities for the special conformal transformations of the form

n∑
i=1

(
2xν

i xi∂i − x2
i ∂

ν
i

)
Fin[logWn] = 1

2
�cusp

n∑
i=1

log
x2

i,i+2

x2
i−1,i+1

xν
i,i+1, (3)

where �cusp is the cusp anomalous dimension, fix the solution up to five external legs.
The anomalous Ward identities can be applied to both the amplitudes and the Wilson

polygons; however, starting with six external legs the Ward identity allows an arbitrary
function of the conformal cross-ratios, which cannot be fixed by the superconformal group
arguments.

There are some specifics concerning the loop MHV amplitudes. The one-loop Wilson
loop diagram with arbitrary number of external legs can be mapped to the finite part of the
two-mass easy box, which is the main building block of the solution. The generalization of
the duality to the non-MHV amplitudes turns out to be a nontrivial issue. In particular it is
known [37] that the NMHV loop amplitude involves mass box diagrams as well and harder
diagrams are relevant for the Nk MHV amplitudes. No recipe for the duality beyond the MHV
case has yet been formulated.

3



J. Phys. A: Math. Theor. 42 (2009) 355214 A Gorsky and A Zhiboedov

It was demonstrated that the unitarity approach is fruitful for the description of the loop
amplitudes. A general planar color-ordered one-loop scattering super-amplitude can be written
in the following way:

An;1 = i(2π)4δ4(p)
∑

(C4mI 4m + C3mI 3m + C2mhI 2mh + C2meI 2me + C1mI 1m), (4)

where the I are the scalar-box integrals with the corresponding number of legs off-shell.
All one needs to calculate for a given amplitude are the coefficients, which can be done

in terms of quadruple cuts. The general form of the Cm takes the form

Cm = δ8

(
n∑

i=1

λiηi

) [
P(0),m

n;1 + P(4),m

n;1 + · · · + P(4n−16),m

n;1
]
, (5)

where P(4k),m

n;1 are homogeneous polynomials of degree 4k in Grassmann variables.
The one-loop MHV super-amplitude takes the following form:

AMHV
n;1 = i(2π)4δ4(p)

δ8(
∑n

i=1 λiηi)

〈12〉〈23〉 . . . 〈n1〉

[
n−1∑
s=3

I 2me
1,2,s,s+1	1,2,s,s+1 + cyclic

]
, (6)

where 	r,t,s,s+1 = − 1
2

[
x2

srx
2
s+1t − x2

s+1rx
2
st

]
. The solution is fully defined by two-mass easy

boxes.
The general one-loop NMHV amplitude has a more complicated structure, namely

ANMHV
n;1 = AMHV

n;1

⎡⎣ n∑
p,q,r=1

Rpqr

(
1 +

λ

8π2
Vpqr + O(ε)

)⎤⎦ , (7)

where two-mass hard and three-mass boxes are involved, Rpqr are dual superconformal and
Vpqr are dual conformal invariants.

3. Hyperbolic geometry of one loop

In what follows it will be useful to utilize the geometrical picture behind the one-loop
calculations which we shall review following [20]. Let us explain first the explicit map of the
box diagram to the hyperbolic volume of the particular simplex build from the kinematical
invariants of the external momenta. To this end, we introduce the Feynman parametrization
of the internal generically massive propagators with the parameters αi . If one considers the
one-loop N-point function with the external momenta pi in D space-time dimensions it can be
brought into the usual form

J (D, p1, . . . pN) ∝
∫ 1

0

N∏
i=1

dαi

δ
(
1 − ∑N

i=1 αi

)
[∑N

i=1 α2
i m

2
i +

∑N
i<j αiαjmimjCij

]N− D
2

, (8)

where

Cij = m2
i + m2

j − k2
ij

2mimj

, kij =
j−1∑
m=i

pm (9)

and mi is the mass in the ith propagator.
It is possible [20] to organize for the generic one-loop diagram the N-dimensional basic

simplex defined as follows. First introduce the N mass vectors miai , where ai are the unit

vectors. The length of the side connecting the ith and j th mass vectors is
√

k2
ij —here we work

4
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Figure 1. An example of the basic simplex for the box diagram.

in the kinematical region where k2
ij > 0—that is, one can define the momentum side of the

simplex. For N = 4 see figure 1. The N-dimensional simplex involves N(N+1)

2 sides including
N mass sides as well as N(N−1)

2 momentum sides. At each vertex N sides meet, and at all
vertices but one there are one mass side and (N − 1) momentum sides. The volume of such
an N-dimensional simplex is given as follows:

V (N) =
(∏

mi

)√
det C

N !
, (10)

where C is the matrix with elements Cij defined above.
There are (N + 1) hypersurfaces of dimension (N − 1), one of which contains only

momentum sides and can be related to the massless N-point function.
It is convenient to make a change of variables that transforms the loop integral into the

following form:

J (D, p1, . . . pN) ∝
∫ ∞

0

N∏
i=1

dαi

mi

δ(αT Cα − 1)

(
N∑

i=1

αi

mi

)N−D

, (11)

that is, the integration is now over the quadrics in the space of the Feynman parameters.
For D = N this integral is nothing but the content �(N) of part of an (N −1)-dimensional

non-Euclidian hypersurface αT Cα = 1 of constant curvature which is cut out by the integration
limits in the space of Feynman parameters. Sides τij of this non-Euclidian simplex are equal
to the angles between the mass vectors of the basic simplex (see figure 2)

Cij = cos τij . (12)

Equivalently, this content is equal to the N-dimensional solid angle at the mass meeting
point of the basic simplex.

Then the integral for the case D = N acquires the following form:

J (N, p1, . . . pN) = i1−2N πN/2�(N/2)�(N)

N !V (N)
; (13)

5



J. Phys. A: Math. Theor. 42 (2009) 355214 A Gorsky and A Zhiboedov

Figure 2. Definition of τij in terms of the basic simplex.

hence the calculation of the Feynman integral is nothing but the calculation of the volume in
a proper space.

The case N �= D can be treated similarly with some modifications [20].
Let us turn now to the case of interest that is N-leg MHV amplitudes in four dimensions.

The crucial point is that the one-loop MHV amplitudes can be presented as the sum of the
two-mass easy box diagrams. These diagrams are IR divergent, that is, it is useful to start with
the box diagram with all off-shell particles.

For a box corresponding to N = 4,

J (4, p1, p2, p3, p4) = 2iπ2�(4)

m1m2m3m4

√
det C

. (14)

In our formulae we take the mass of the propagators equal to zero. We obtain(
m2

i m
2
2m

2
3m

2
4det C

)
mi→0 = 1

16λ
(
k2

12k
2
34, k

2
13k

2
24, k

2
14k

2
23

)
, (15)

where the Källen function λ(x, y, z) is defined as

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx (16)

and
√−λ is just the area of the triangle with sides

√
k2

12k
2
34,

√
k2

23k
2
24,

√
k2

31k
2
23.

In the limit of massless propagators Cij → ∞ and should be considered as hyperbolic
cosines. Taking them to infinity corresponds to the vertices of the non-Euclidian simplex being
located at infinity. Thus, we need to calculate the volume of the ideal hyperbolic tetrahedron.
This can be represented through its dihedral angles ψij

2i�(4) = Cl2(2ψ12) + Cl2(2ψ13) + Cl2(2ψ23) (17)

which are defined via the kinematical invariants

cos ψ12 = k2
13k

2
24 + k2

14k
2
23 − k2

12k
2
34

2
√

k2
13k

2
23k

2
14k

2
43

(18)

cos ψ13 = k2
14k

2
23 + k2

12k
2
43 − k2

13k
2
24

2
√

k2
14k

2
23k

2
12k

2
43

(19)

cos ψ14 = k2
12k

2
34 + k2

13k
2
24 − k2

14k
2
32

2
√

k2
13k

2
24k

2
12k

2
43

(20)

and ψ12 = ψ34, ψ13 = ψ24, ψ14 = ψ32.
The functions involved are defined as

Cl2(x) = Im[Li2(e
ix)] = −

∫ x

0
dy ln|2 sin y/2|. (21)

6
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Figure 3. Two-mass easy box diagram.

In the case of the two-mass easy box diagram defining the one-loop MHV amplitude the
additional simplification of the kinematical invariants occurs since two external particles are
on the mass shell. In this case the arguments of the Li2 function degenerate to the conformal
ratios of four points. The geometrical picture behind the divergent part of the diagram will be
discussed later.

Note that the massless 4-point box solution coincides with the 3-point result which has
been known for some time [22]. However the geometrical object responsible for the 3-point
function is just the triangle. The solution for the generic 3-point function is expressed in terms
of the angles of the basic triangle only [20].

The appearance of the hyperbolic volume implies that the topological string approach or
CS with the SL(2, C) group are relevant [40]. Indeed we can consider the ideal tetrahedron
as the knot complement and calculate it via the Chern–Simons theory action with the complex
group. It turns out that the choice of the particular values of the kinematical invariants
corresponds to the choice of the particular knot [27].

4. Derivation of the Wilson polygon–MHV amplitude duality at one loop

In this section we shall derive the duality at the one-loop lever via a two-step procedure. First,
we describe the change of variables in the space of Feynman parameters which brings the
two-mass easy box diagrams into the form of the Wilson polygon in a different dimension.
Then we make use of the relation between the Feynman diagrams in D = 6 and D = 4.

Let us start with the definition of the general box in DIR = dIR − 2εIR dimensions and use
notations from [16]:

I (pi,DIR, μIR) = −iπ− DIR
2
(
μ2

IR

)εIR

∫
dDIR l

1

l2(l − p1)2(l − p1 − p2)2(l + p4)2

p2
i = m2

i .

(22)

One can introduce the Feynman parameters and take the integral over l which amounts to

I (pi,DIR, μIR) = (
μ2

IR

)εIR
�

(
4 − DIR

2

)∫ ∏
dxi

δ(1 − x1 − x2 − x3 − x4)

(−	)4− DIR
2

	 = sx1x3 + ux2x4 + m2
1x1x2 + m2

2x2x3 + m2
3x3x4 + m2

4x4x1,

(23)

where s = (p1 + p2)
2 and u = (p2 + p3)

2. Let us focus on the two-mass easy box diagram
when m2

1 = m2
3 = 0 (see figure 3) and therefore

	2me = sx1x3 + ux2x4 + m2
2x2x3 + m2

4x4x1.

7
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Figure 4. Wilson diagram dual to the finite part of the two-mass easy box.

Upon the following change of variables

x1 = σ1τ1

x2 = σ1(1 − τ1)

x3 = σ2(1 − τ2)

x4 = σ2τ2∣∣∣∣ ∂(xi)

∂(σi, τi)

∣∣∣∣ = σ1σ2,

(24)

the integration over σi factorizes and one obtains

I 2me(pi,DIR, μIR) = (
μ2

IR

)εIR
�

(
4 − DIR

2

)∫
dσ1 dσ2σ

DIR
2 −3

1 σ
DIR

2 −3
2 δ(1 − σ1 − σ2)

×
∫ 1

0
dτ1 dτ2

1( − [(
m2

2 + m2
4 − s − u

)
τ1τ2 +

(
s − m2

2

)
τ1 +

(
u − m2

2

)
τ2 + m2

2

])4− DIR
2

.

(25)

In this expression one can observe much similarity with the Wilson loop diagram depicted in
figure 4. Indeed, we will show further that proper identification of parameters allows us to
connect it with the Wilson loop diagram explicitly.

It is important that the special combinations of Feynman parameters play the role of
parametrization of the point in the Wilson polygon which emerges in the one-loop calculation

W(Cn) = 1

N
TrP exp

[
ig

∮
dτ ẋμ(τ )Aμ(x(τ))

]
. (26)

We assume that DUV = dUV − 2εUV, p1 and p3 are light-like, x = p1(1 − τ1), y =
p1 + p2 + p3τ2 and the standard propagator in the Feynman gauge

GF
μν(x − y) = −ημν

(
πμ2

UV

)εUV

4π2

�
(

DUV
2 − 1

)
(−(x − y)2 + iε)

DUV
2 −1

. (27)

Ignoring the trivial factor g2CF

16π2 we obtain the following expression for the diagram:

IW
ij (pi,DUV, μUV) = �

(
DUV

2
− 1

) (
πμ2

UV

)εUV

×
∫ 1

0
dτi dτj

m2
2 + m2

4 − s − u( − [(
m2

2 + m2
4 − s − u

)
τ1τ2 + τ1

(
s − m2

2

)
+ τ2

(
u − m2

2

)
+ m2

2

])DUV
2 −1

(28)

8
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and from (25) and (28) we can identify the parameters to enable us to match two expressions.
Namely substituting DUV

2 − 1 = 4 − DIR
2 we obtain

dUV + dIR = 10

εIR = −εUV(
μ2

UVπ
)εUV = (

μ2
IR

)εIR

(29)

and the exact correspondence reads as follows:

I 2me(pi,DIR, μIR) = 1

m2
2 + m2

4 − s − u

∫ 1

0
dσσ 2− DUV

2 (1 − σ)2− DUV
2 IW

ij (pi,DUV, μUV)

= 1

m2
2 + m2

4 − s − u

�
(
3 − DUV

2

)2

�(6 − DUV)
IW
ij (pi,DUV, μUV).

Note that it is possible to represent the expression for the Wilson polygon in a form which
involves integrating over the reparametrization of the boundary contour:

I 2me(pi,DIR, μIR) = 1

m2
2 + m2

4 − s − u

∫ 1

0
dσIW (C(σ ), pi,DUV, μUV)

C(σ ) : pi →
√

σ(1 − σ)pi.

This form of the solution was suggested for the strong coupling [32] when the integration
over the reparametrizations of the boundary of the Wilson loop is necessary to restore the
conformal invariance of the solution.

Suppose we are interested in the DUV = 4 − 2ε Wilson loop diagram. Then, using the
known connection between the Wilson diagram and the finite part of the box, we obtain

IW
ij (pi, 4 − 2ε) = (

m2
2 + m2

4 − s − u
)�(2 + 2ε)

�2(1 + ε)
I 2me(pi, 6 + 2ε)

= Fin

[
�(1 + 2ε)

�2(1 + ε)
I 2me(pi, 4 + 2ε)

1

2

(
m2

2m
2
4 − su

)]
(30)

and therefore the following relation provides the desired duality

I 2me(pi, 6 + 2ε) = Fin

[
I 2me(pi, 4 + 2ε)

1 + 2ε

(
su − m2

2m
2
4

)
2
(
s + u − m2

2 − m2
4

)] . (31)

Such a connection between D- and (D − 2)-dimensional scalar loop integrals indeed
exists [38]. Here we are interested in the case of D = 6 two-mass easy boxes
and their connection with the D = 4 ones [15]. The formula reads as follows (see
appendix A):

I 2me(6 + 2ε) = 1

(1 + 2ε)z0
(I 2me(4 + 2ε) −

4∑
i=1

ziI
2me(4 + 2ε; 1 − δki)),

9
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where

z0 =
4∑

i=1

zi = 2
s + u − m2

2 − m2
4

su − m2
2m

2
4

z1 = u − m2
2

su − m2
2m

2
4

z2 = s − m2
4

su − m2
2m

2
4

z3 = u − m2
4

su − m2
2m

2
4

z4 = s − m2
2

su − m2
2m

2
4

.

As can be easily seen, the
∑4

i=1 ziI
4(4 + 2ε; 1 − δki) does precisely the job of taking the finite

part.
As we know from the calculation of the one-loop NMHV amplitudes [28], new ingredients

emerge, namely two-mass hard and three-mass boxes. Thus if one wants to extend the duality
between the Wilson loop and amplitudes to the NMHV case one should be able to get these
ingredients from the Wilson loop language.

In the case of the two-mass easy box the structure of the function in the space of Feynman
parameters space allows us to use the change of variables to get the Wilson loop diagram
multiplied by the simple numerical integral. We can interpret this as an integral over the
reparametrizations of the contours. One can try to use the same approach of splitting the
Feynman parameters into two pairs: one pair parameterizes the contour while the second
yields the standard parametrization of points where the gluon propagator is attached.

For two-mass hard, three- and four-mass boxes factorization fails and therefore the simple
geometrical interpretation does not work. Namely, if we make all legs massive in the Feynman
box and consider the corresponding Wilson contour, the integrands in the amplitude and the
Wilson loop look as follows:

	W = −(
s + u − m2

2 − m2
4

)
τ1τ2 +

(
u − m2

2

)
τ1 +

(
s − m2

2

)
τ2 + m2

2

−m2
1τ1

(
1 − τ1

) − m2
3τ2(1 − τ2) (32)

	A = σ1σ2
[ − (

s + u − m2
2 − m2

4

)
τ1τ2 +

(
u − m2

2

)
τ1 +

(
s − m2

2

)
τ2 + m2

2

]
+ m2

1σ
2
1 τ1(1 − τ1) + m2

3σ
2
2 τ2(1 − τ2)

= σ1σ2	W + m2
1σ1τ1(1 − τ1) + m2

3σ2τ2(1 − τ2). (33)

We have not found a simple geometrical interpretation of transformation from 	W to 	A in
terms of the reparametrizations of the Wilson contour and we cannot naturally connect two-
mass hard and harder boxes diagrams with Wilson diagrams for the corresponding contours.
That is, if a connection between NMHV amplitudes and Wilson polygon-like objects exists,
which is expected according to the T-dual picture of AdS5 × S5 superstring [12], then it seems
to be more complicated.

5. 3-point function–Wilson triangle duality

In this section we consider the example of the similar duality for the 3-point function and it
will be clear how the generalization of the duality for the ‘two-mass hard’ diagram involves

10
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Figure 5. Scalar triangle diagram.

Figure 6. Two-mass triangle diagram.

the particular vertex operator. To start with let us mention also the interesting relation between
the one-loop 3-point amplitude and the two-loop vacuum energy in the scalar theory. Namely,
if one considers the 3-point function I

(
p2

1, p
2
2, p

2
3

)
with the external virtualities p2

1, p
2
2, p

2
3 and

the two-loop vacuum energy J
(
m2

1,m
2
2,m

2
3

)
with the masses of the three internal propagators

m2
1,m

2
2,m

2
3 then the following relation holds [21]:

I
(
D = 4 − 2ε, p2

1, p
2
2, p

2
3

) = J
(
4 + 2ε,m2

1,m
2
2,m

2
3

)
. (34)

That is, the duality discussed below can be applied both for the one-loop amplitude and the
two-loop vacuum energy.

Consider the most general triangle in the massless scalar theory (see figure 5). In the
Feynman parametrization it is equal to

p1 + p2 + p3 = 0

I	(pi,DIR, μIR) = −(
μ2

IR

)εIR
�

(
3 − DIR

2

)∫ ∏
dxi

δ(1 − x1 − x2 − x3)

(−	)3− DIR
2

	 = m2
3x1x2 + m2

2x1x3 + m2
1x2x3

(35)

and assuming p2
3 = 0 (see figure 6) we have

	 = m2
2x1x3 + m2

1x2x3.

Let us make the following change of variables:

x1 = σ(1 − τ) x2 = στ (36)

which amounts to

I	(pi,DIR, μIR) = (
μ2

IR

)εIR
�

(
3 − DIR

2

)∫
dσ dx3σ

δ(1 − σ − x3)

(σx3)
3− DIR

2

×
∫ 1

0
dτ

1(
m2

2(1 − τ) + m2
1τ

)3− DIR
2

. (37)

11



J. Phys. A: Math. Theor. 42 (2009) 355214 A Gorsky and A Zhiboedov

Figure 7. Wilson diagram dual to the two-mass triangle diagram.

In Wilson-dual language we can interpret it in the following way (see figure 7):

m2
2(1 − τ) + m2

1τ = (p2 + p3τ)2 (38)

and the identification of parameters reads as follows:

dUV + dIR = 8

εIR = −εUV (39)(
μ2

UVπ
)εUV = (

μ2
IR

)εIR;
therefore this diagram can be understood assuming the presence of the vertex operator〈

T rPqμAμ(xb) exp

[
ig

∮
C

dτ ẋμ(τ )Aμ(x(τ))

]〉
, (40)

where qμ can be chosen to be the arbitrary vector which is not orthogonal to p3 in the
Minkowski sense, (p3q) �= 0. This qμ can naturally be identified with the polarization vector
of the correspondent external gluon. Hence we have an example of the possible extension of the
Wilson dual side, when it becomes sensitive to polarizations of external gluons. This example
provides some intuition for the possible generalization of the duality to less symmetric theories
or NMHV amplitudes. Nevertheless, the problem of interpreting the three-mass triangle and
all boxes harder than the two-mass easy one in terms of Wilson loop diagrams is still open.

6. Analytical structure of the light-like Wilson loop

6.1. General comments

In this section we discuss the analytical structure of the light-like Wilson loop. If the
correspondence between MHV amplitudes and Wilson loops is true at any order of perturbation
theory, obviously their analytical structure, namely the location of singularities, branches and
discontinuities in the space of kinematic moduli, should match each other. Thus there emerge
two interesting problems in themselves: analytical structure of perturbative light-like Wilson
loop and a similar question concerning the areas in AdS5 bounded by the light-like contour.

Here we begin the analysis of the analytical structure of the perturbative Wilson loop.
First, we can do it using its connection with scattering amplitudes. The fact of unitarity of
QFT leads to the optical theorem and allows one to take different branch cuts and develop
the generalized unitarity method to simplify loop computations. Using the correspondence
between Wilson loops and amplitudes we can reformulate the optical theorem at one loop in
terms of Wilson loops.

Second, one can analyze the analytical structure of every Wilson diagram on its own.
The systematic method of clarifying the structure of singularities of Feynman amplitudes was

12
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developed a long time ago in the theory of an analytic S-matrix. It can obviously be applied
to the Wilson loop diagrams. At the one-loop level, using the results of the previous section,
we can apply the Cutkosky rules to 10 − DW boxes which are dual to the Wilson diagrams to
get the result for the given diagram, while at higher orders additional arguments are required.

6.2. Landau singularities for the Wilson loop

The approach considered here is parallel to that of [35], where an excellent introduction to
the problem can be found. If we deal with scalar massless theory Feynman integrals in D
dimensions, then we have, for any diagram [36],

I 

∫ 1

0

∏
dαiδ

(
1 −

∑
i

αi

)
UN−(L+1) D

2

(−V)N−L D
2

. (41)

Here L is the number of loops; N is the number of propagators; αi corresponds to the ith
propagator in the diagram of the form 1

q2
i

,

U =
∑
T ∈T1

∏
i∈T̄

αi is the sum over the so-called 1-trees, degree L in α,

V =
∑
T ∈T2

∏
i∈T̄

αi(QT )2 the sum over the so-called 2-trees, degree(L + 1) in α,

and I can be considered as the function of complex kinematical parameters. A natural
question arises: where are its singularities located in the space of parameters? The answer to
this question is given by the Landau equations which can be written in the following form:⎧⎨⎩

∂V
∂αi

= 0 ∧ αi = 0

V = 0,

and the same analysis can be applied for any particular Wilson loop. If one considers a family
of more simple diagrams where every propagator has one leg lying on the boundary, then
the consideration is in full analogy with the case of amplitudes. Namely the diagram has the
following structure

W 

∫ 1

0

2N∏
i=1

dτiθPath
(
x
(
τσ1

)
> x

(
τσ2

)
> · · · > x

(
τσ2N

)) V3∏
k=1

L̂k

dDz1d
Dz2 . . . dDzV∏N

k=1

(−x2
k

) D
2 −1

. (42)

Here L̂k is the differential operator independent of zi , which comes from three-gluon vertices
[39]; V3, the number of three-gluon vertices

Aμ1Aμ2Aμ3

∫
dDzkT r[∂μ(Aν[Aμ,Aν])(zk) ∼ [

ημ1μ2
(
∂

μ3
1 − ∂

μ3
2

)
+ ημ2μ3

(
∂

μ1
1 − ∂

μ1
2

)
+ ημ1μ3

(
∂

μ2
1 − ∂

μ2
2

)]
G(x1, x2, x3)L̂

μ1μ2μ3
k G(x1, x2, x3). (43)

Then if the points (x1, x2, x3) lie on the edges (y1, y2, y3),

L̂k = ẏ1μ1 ẏ2μ2 ẏ3μ3L̂
μ1μ2μ3
k . (44)

For any ordering, there exists a change of variables of integration with the Jacobian J ,
independent of the kinematical variables, that makes the simple integration interval:∫ 1

0

2N∏
i=1

dτiθPath(τ ) →
∫ 1

0

2N∏
i=1

dτ̃iJ (τ̃ ). (45)

13
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If we have the following ordering along one of the edges
∫ 1

0 dτn

∫ τn

0 dτn−1 . . .
∫ τ2

0 dτ1, then we
can choose

τn = τ̃n

τn−1 = τnτ̃n−1 = τ̃nτ̃n−1

. . .

τ1 = τ2τ̃1 = τ̃nτ̃n−1 . . . τ̃1

J (τ̃ ) =
n∏

j=1

τ̃
j−1
j .

(46)

If the vertices are absent then the Landau equations take the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

(∑
αkx

2
k

)
∂αi

= 0 ∧ αi = 0

∂

(∑
αkx

2
k

)
∂τ̃i

= 0 ∧ τ̃i = 0 ∧ τ̃i = 1∑
αkx

2
k = 0.

In the presence of vertices we can introduce the Feynman parameters

W 

∫ 1

0

2N∏
i=1

dτ̃iJ (τ̃ )

V3∏
k=1

L̂k

∫ 1

0

N∏
k=1

dαkα
D
2 −2

k δ

(
1 −

∑
i

αi

)
dDz1d

Dz2 . . . dDzV[−∑
αkx

2
k

]N( D
2 −1)

(47)

and integration over the vertex position can be performed, yielding the solution

W 

∫ 1

0

2N∏
i=1

dτ̃iJ (τ̃ )

V3∏
k=1

L̂k

∫ 1

0

∏
dαkα

D
2 −2

k δ

(
1 −

∑
i

αi

)
UW(αi)

(−VW)(N−V ) D
2 −N

. (48)

Here, V is the number of vertices; N is the number of propagators; αi corresponds to the ith
propagator in the diagram of the form 1

(−x2
i )

D
2 −1

; UW and VW are the result of the integration

over the loop momenta.
Finally we obtain the following Landau equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂VW

∂αi

= 0 ∧ αi = 0

∂VW

∂τ̃i

= 0 ∧ τ̃i = 0 ∧ τ̃i = 1

VW = 0.

6.3. Imaginary part of the Wilson loop at one loop

In unitary theory one can exploit the unitarity of the S-matrix to obtain the following identity:

S+S = 1 S = 1 + iT

2Im(A(in → out)) = −i(A(in → out) + A∗(out → in))

=
∑
states

A∗(out → all)A(in → all). (49)

We are interested in amplitudes with n outgoing particles. In this case, the RHS
sum becomes the sum over the state with integration over a Lorentz invariant phase space
corresponding to the final particles. Extending this statement to the diagrammatic level one
ends up with Cutkosky rules and a prescription of the cutting propagators:

1

k2 + iε
→ θ(k0)δ(k

2). (50)
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Figure 8. Wilson loop analog of cut rules for scattering amplitudes.

It is well known that to get the imaginary part of the diagram to a given order one should
sum over all possible cuts of all diagrams and over all possible intermediate states. Then one
should do the integration over LIPS. The Wilson loop detects N = 4 SYM particle content
only through correction to the gluon propagator and the vertices. At the one-loop level it is
obviously insensitive to particle content. On the amplitude side the cut is in contrast essentially
dependent on the particle content and tree-level amplitude even at one loop. According to the
strong version of the correspondence which is true at one loop,

AMHV
n = Atree

n W(Cn) (51)

with necessary identification of parameters. Since Atree
n is a rational function of kinematical

variables it does not contribute to the cut. Hence we can rewrite the optical theorem as

2Im[W(Cn)] = 2Im

(
A(in → out)

Atree(in → out)

)
=

∑
states

A∗(out → all)A(in → all)

Atree(in → out)
. (52)

At the one-loop level we have sum over products of tree-level amplitudes. Denoting this
sum divided by Atree

n as VW (which can be found in appendix B) we have

Im[W(C)] =
∫
CLCR

VW(CL, CR), (53)

where integration goes over contours which one could get by breaking the loop into two parts,
inserting a special vertex, which one could find from summing over states in N = 4 SYM,
and then by integration over contours which are limited by momentum conservation and the
light-like condition for every edge (see figures 8 and 9).

On the other hand the problem of finding the imaginary part can be considered at the
diagrammatical level where the connection with the box in dual dimension makes it possible
to apply Cutkosky rules. Of course, in this method there is no summation over states. It would
be nice to understand how the vertices from the dual amplitude picture occur in this scenario.
The following picture arises if one considers the quadruple cut. It is interesting to note the
role of the coefficient

C2me
MHV = δ8

(
n∑

i=1

λiηi

)
	 (54)
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Figure 9. Four-particle cut and its Wilson loop counterpart.

which appears from the quadruple cut of the MHV amplitude and is defined by the structure
of tree amplitudes in N = 4 SYM. In the Wilson loop calculation which is blind to trees it
appears as we go down from D = 6 to D = 4 dimensions, namely

z0 ∼ 1

	
. (55)

7. On the geometry of UV/IR divergences

Let us discuss the interpretation of the divergent contributions. The IR singularity of the
amplitude corresponds to the UV singularity of the cusps, hence the very issue of the proper
IR regularization of the amplitude is essentially related to the smoothing of the cusps in the
polygon in the momentum space.

Let us make a few comments concerning the proper identification of the cusp anomaly
in geometrical terms [25, 26]. Since the amplitude is expressed in terms of the hyperbolic
volumes and area in 3D AdS space, it is natural to question what the cusp anomaly corresponds
to in the same setting. That is, we can start with a box with all external momenta off-shell
which is finite. Then approaching the on-shell limit for two external momenta the geometrical
volume and area start diverging which corresponds to the divergence of the Feynman diagram.
Nevertheless we expect that the initial geometry is partially seen in the divergent terms.

Recall that �cusp(θ, α) is the cusp anomalous dimension which for the cusp angle θ at one
loop behaves as

�cusp(θ, α) = αCF

π
(θ coth θ − 1) + O(α2). (56)

It turns out [25] that the one-loop expression is nothing but the transition amplitude in AdS3

�cusp(θ) ∝ 〈v′|1/	S3 |v〉, (57)

where two light-like vectors v and v′ cross at the angle, and 	S3 is the corresponding Laplace
operator on the SU(2) group manifold. That is, the one-loop anomaly can be attributed to
the amplitude along the single edge of the basic simplex upon the analytic continuation [25].
Note that these geodesics connecting two vertices are dressed by the quadratic fluctuations.

Since the quantum geometry of the AdS3 is governed by the SL(2, C) Chern–Simons
theory the corresponding Wilson loop is just the particle moving in this background. It is also
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possible to make the link with the AdS2 geometry since the one-loop cusp anomaly can be
written as the wave functional in the two-dimensional YM theory on the disc integrated over
its area:

�cusp(θ) ∝
∫

dA(Z(U,A) − Z(U, 0)), (58)

where A is the area of the disc, U is the boundary holonomy and Z(U,A) is the partition
function of the 2D YM theory in the disc geometry.

Since it is expected that the reparametrization of the boundary enters the solution it
is natural to search for the Liouville interpretation of the cusp anomaly. Contrary to the
finite contribution where the reparametrization part decouples and does not depend on the
kinematical invariants, we expect that the divergent ‘Liouville’ contribution has nontrivial
kinematical dependence.

Possible arguments which deserve more justification are as follows [26]. Consider two-
dimensional scalar field theory with the equation of motion(

∂2
t − ∂2

x

)
φ + m2φ = 0 (59)

whose solution has the following mode expansion

φ(x, t) =
∫

dβ

2π
(a∗(β) e−im(x sinh β−t cosh β + a(β) eim(x sinh β−t cosh β). (60)

It is convenient to introduce Rindler coordinates

x = r cosh θ, t = r sinh θ

−∞ < θ < +∞ 0 < r < +∞ (61)

in the space-time region x > |t | > 0. Upon the following Laplace transform with respect to
the radial coordinate,

λθ(α) =
∫

dr eimr sinh α

(
−1

r
∂θ + im cosh α

)
φ(r, θ), (62)

the commutation relation for the Laplace transformed field reads as

[λ(α1), λ(α2)] = ih̄ tanh(α1 − α2)/2 (63)

and the Hilbert space is spanned by vectors a(βn) . . . a(β1)|vac〉 where the vacuum state is
defined as

a(β)|vac〉 = 0 〈vac|a+(β) = 0. (64)

One can introduce the two-point function on the ‘rapidity plane’

F(α1 − α2) = 〈vac|λ(α1)λ(α2)|vac〉 (65)

and an explicit calculation gives the following result [42]

F(α − iπ) = − 1

π
α/2 coth(α/2) + singular terms. (66)

Hence the singular terms cancel in the difference F(α − iπ) − F(−iπ) which coincides with
the cusp anomaly in agreement with the interpretation of [25] in the first quantized picture.

The relation with the Liouville model becomes clear upon the proper limiting procedure.
To this end we can try to represent the Klein–Gordon equation of motion as the zero curvature
condition for SL(2, R) connection. Similarly the equation of motion in the Liouville model(

∂2
t − ∂2

x

)
φ +

m2

b
ebφ = 0 (67)
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can be considered as a zero curvature condition for the SL(2, R)-valued connection Aθ,Ar .
It is convenient to introduce the monodromy matrix in the Liouville model

Tθ (α) ∝ eimR sinh ασ3P exp

(∫
drAr(r, θ, α)

)
, (68)

where R is the cutoff, which defines λLiouv(x) via the relation

λ(α) = −i ln T11(α), (69)

and the latter reduces to the corresponding Klein–Gordon function involved into the cusp
anomaly and in the weak coupling limit b → 0 [42]

λLiouv(α) → b

4
λKG(α). (70)

8. Discussion

In this paper we have discussed different aspects of the duality between the calculation of the
Wilson polygons and amplitudes in SUSY gauge theories focusing mainly on the one-loop
correspondence. It turns out that the duality for the MHV amplitude can explicitly be derived
in the one-loop case. The derivation is remarkably simple and involves only the proper change
of the variables and the relation between the Feynman integrals in the different space-time
dimensions. The Wilson polygon to some extent can be thought of as placed in the space of
the Feynman parameters and it is in this space that the change of variables is important. It
was shown that the UV behavior of the Wilson polygon precisely maps into the IR behavior
of the amplitude which explains the correspondence between the regularizations observed
earlier.

The change of variables works well for the MHV amplitude only, which can be expressed
in terms of two-mass easy box diagrams and the generalization of the duality for the NMHV
cases is required. Note that we have identified the key feature of the MHV kinematics—only
in this case the integration over reparametrizations is decoupled which is not true for the other
cases. Therefore one could expect for the generic kinematics the emergence of the correlators
of the Liouville modes responsible for the reparametrizations of the boundary contour. We
consider a similar duality for the 3-point function with one external particle on-shell. It was
shown that the duality can be formulated upon the insertion of the particular vertex operator
into the Wilson triangle. We consider this example as providing a possible method for the
generalization of the duality for the polarization-sensitive case. Let us emphasize that SUSY
was not essentially used in our one-loop derivation of the duality. Probably the duality can be
similarly developed for the non-SUSY theories as well.

It is worth making a more general comment concerning the relation of our analysis with
the moduli space geometry. In the approach of [17, 18], the Schwinger parameters get mapped
generically into the radial coordinate in AdS5 and the moduli space of the complex structures
Mg,n where n is related to the number of external legs in the amplitude. That is, the Schwinger
parametrization is closely related to the B model. On the other hand, in our paper we exploited
a picture with the emergent Kähler moduli which happens in the A model. In principle one
could imagine that a kind of mirror transform on the level of the Feynman diagrams can be
formulated and it would be very interesting to investigate this issue further. Note also that
the A model under consideration allows the target space an effective description in terms of
the effective noncommutative gauge theory [41]. We hope to discuss the possible relation
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between the Wilson loops in D = 6 we have discussed with the corresponding object in the
effective target space D = 6 gauge theory elsewhere.

The duality implies that a kind of unitary technique can be developed for the calculation
of the Wilson polygon as well. We have formulated the cut procedure for the one-loop Wilson
polygon which involves integration along the cut with the particular vertex-like operator.
Along this line of reasoning we have also derived the analog of the Landau equations
for the singularities for the Wilson polygon in terms of the Feynman parameters. Let us
emphasize that the geometry behind the Landau equations has a lot in common with the
generic hyperbolic geometry behind the one-loop amplitudes. Actually the generic off-shell
box diagram calculates the hyperbolic volume of the simplex defined by the kinematical
invariants, that is all divergences emerging upon some external particle that tends to be on-
shell are expected to carry some geometrical information about the initial hyperbolic geometry.
We have shown that at the one-loop level this indeed happens.

In this paper we have discussed the one-loop case only, hence it would be very interesting
to extend this analysis to higher loops. The approach to the all-loop answer based on the
quantum geometry of the momentum space suggested in [24] could be useful. Another
promising development concerns the relation with the geometry of the knots which emerges
because of the relation with the volumes of the hyperbolic spaces identified with the knot
complements.
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Appendix A. Connection of scalar integrals in different dimensions

Here we briefly explain the connection between the scalar integrals in different dimensions
[15]. If we have the following scalar integral (for kinematical notations see figure A1)

IN(D; νk) ≡ −iπ− D
2 (μ2)ε

∫
dDl

1

A
ν1
1 A

ν2
2 . . . A

νN

N

(A.1)

then it can be shown that

IN(D − 2; νk) =
N∑

i=1

ziI
N(D − 2; νk − δki) +

⎛⎝D − 1 −
N∑

j=1

νj

⎞⎠ z0I
N(D; νk), (A.2)

where

N∑
i=1

(ri − rj )
2zi = 1 z0 =

N∑
i=1

zi . (A.3)

In the main body of the text we choose D = 6 + 2ε,N = 4, νi = 1.
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Figure A1. General one-loop scalar diagram.

Appendix B. Sum over states in terms of dual superconformal invariants

It is convenient to use the N = 4 on-shell formulation of N = 4 SYM, in which all states are
encoded in one super-wavefunction

�(p, η) = G+(p) + ηA�A(p) +
1

2
ηAηBSAB(p) +

1

3!
ηAηBηCεABCD�̃D(p)

+
1

4!
ηAηBηCηDεABCDG−(p). (B.1)

We are interested in the cuts of superamplitudes for n particles

An(λ, λ̃, η) = An(�1, . . . , �n). (B.2)

Using the superamplitude formalism one can easily obtain particular configuration of states
using known projectors. As usual, we use the two-component spinor formalism, where
pαα̇

i = λα
i λ̃α̇

i and 〈i|j 〉 = λα
i λjα .

The Nk MHV amplitude can be presented in terms of nested sums, which are quite
cumbersome expressions for MHV and NMHV cases, and are pretty simple

AMHV
n = δ(4)

(∑n
i=1 λα

i λ̃α̇
i

)
δ(8)

(∑n
i=1 λα

i ηA
i

)
〈1|2〉 . . . 〈n − 1|n〉〈n|1〉 , (B.3)

where the second (Grassmann) delta-function makes the supersymmetry manifest

ANMHV
n = δ(4)

(∑n
i=1 λα

i λ̃α̇
i

)
δ(8)

(∑n
i=1 λα

i ηA
i

)
〈1|2〉 . . . 〈n − 1|n〉〈n|1〉

∑
(i,j)

Rk;ij (B.4)

and all indices are understood in the following way i + n ≡ i. Then k + 2 � i < j � n + k − 1
and j −i � 2. Rk,ij are dual conformal invariants which are given by the following expressions

Rk;ij = 〈i|i − 1〉〈j |j − 1〉δ(4)(�k;ij )
x2

ij 〈k|xkixij |j 〉〈k|xkixij |j − 1〉〈k|xkjxji |i〉〈k|xkjxji |i − 1〉 . (B.5)

Here the �k;ij is

�k;ij = 〈k|xkixij |θjk〉 + 〈k|xkjxji |θik〉; (B.6)

thus in this language R depends on n − 2 momenta.
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MHV MHV

Figure B1. Example of the MHV–MHV cut.

For supermomentum delta-functions we will widely use the following identity [31] which
can be easily proved:

δ(8)(I )δ(8)(J ) = δ(8)(I + J )δ(8)(J ), (B.7)

the summation over states is equivalent to the integration over
∫

d4ηcut. For particular cuts,
it was done in terms of the MHV vertex expansion in [30]. Here we present some results in
simple form using the language of dual conformal invariants R.

Thus, the summation over states in the L-loop cut is obtained by

Asum
cut =

∫
d4ηcut,1d

4ηcut,2d
4 . . . ηcut,Ld4ηcut,L+1Atree

left ∗ Atree
right. (B.8)

For NL−1 MHV × MHV cuts using (B.7) we can interpret the summation over states as
the action of projection operators.

The result for the NL−1 MHV × MHV cut thus reads as

Asum
cut = δ(8)(ext)

〈lL|lL+1〉4
A

gluons,tree
NL−1MHVsplit(+ + . . . +ext;− − . . . −loop)

×A
gluons,tree
MHV,right(− − + . . . +loop; + . . . +ext). (B.9)

If we cut the MHV diagram at one loop (suppose loop momenta are l1 and l2) then for the
state sum we have (see figure B1)

Asum
cut = δ(8)(ext)

〈l1|l2〉4
A

gluons,tree
MHV (+ + . . . +ext;−−loop)A

gluons,tree
MHV,right(−−loop; + . . . +ext) (B.10)

which agrees with formulae obtained in the literature.
For our purposes we need to divide it on the tree-level amplitude which we have cut. That

would be the operator which glues together the Wilson loops:

VW =
∏

ext〈i|i + 1〉
〈l1|l2〉4

A
gluons,tree
MHV (+ + . . . +ext;−−loop)A

gluons,tree
MHV,right(−−loop; + . . . +ext)

= 〈i|i − 1〉〈j |j − 1〉
〈l1|j 〉〈l1|j − 1〉〈l2|i〉〈l2|i − 1〉 〈l1|l2〉

2. (B.11)

Another case of special interest for us is the anti-MHV × MHV cut when we obtain

Asum
cut = δ(8)(ext)

〈lL|lL+1〉4
A

gluons,tree
MHV

(++ext;− − . . . −loop)A
gluons,tree
MHV,right(− − + · · · +loop; + · · · +ext).

(B.12)
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